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In the context of equation-free computation, we devise and implement a procedure for using short-time
direct simulations of a Kardar-Parisi-Zhang-�KPZ-� type equation to calculate the self-similar solution for its
ensemble averaged correlation function. The method involves “lifting” from candidate pair-correlation func-
tions to consistent realization ensembles, short bursts of KPZ-type evolution, and appropriate rescaling of the
resulting averaged pair correlation functions. Both the self-similar shapes and their similarity exponents are
obtained at a computational cost significantly reduced to that required to reach saturation in such systems.
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I. INTRODUCTION

Often we are faced with the study of systems described by
a given fine scale, microscopic dynamics, for which we
would like to obtain coarse-grained, macroscopic informa-
tion. Such information can include stationary states, instabili-
ties, and bifurcations. When continuum equations describing
the coarse-grained dynamics are available in closed form,
traditional numerical analysis tools can be used to obtain this
type of information efficiently. Recently, much work has
been devoted to developing tools for addressing such ques-
tions in the absence of an explicit coarse-grained description
�see Refs. �1–4�, and references therein�. These equation-free
methods offer the hope of significant savings in storage and
run-time costs over direct numerical simulations of the un-
derlying microscopic dynamics. They also allow the study of
questions inaccessible to direct simulation, for example the
characterization of unstable stationary states. These tech-
niques have been applied to the coarse-grained study of sys-
tems described by microscopic evolution rules �kinetic
Monte Carlo, Brownian and molecular dynamics, Lattice-
Boltzmann, etc., see the references in Ref. �4��.

These tools can also be applied to problems whose solu-
tions are macroscopically characterized by a symmetry
group, such as translational invariance �giving rise to travel-
ing wave solutions�. More recently, the techniques have been
extended to problems whose macroscopic dynamics exhibits
scaling; among these are molecular diffusion �5�, models of
self-similar transport of random Brownian particles �6�, core
collapse in stellar systems �7�, etc. Such problems present
challenges, both conceptual and technical, not necessarily
found in the simpler traveling-wave problems. For example,
since scale-invariance—unlike translational invariance—is
never an exact symmetry of the microscopic dynamics, the
scaling solutions only exist in an asymptotic limit of large
system sizes and long time scales. Furthermore, one must
correctly identify the number of free parameters characteriz-
ing the scaling solution.

In this context we consider the scaling behavior of an
equation in the KPZ class �8,9�. This model is a paradigm for
a wide class of systems whose correlations exhibit
asymptotic scaling. Furthermore, as opposed to the systems
studied through equation-free methods to date, the scaling
behavior is not present in the first moment of the evolving
field, but rather in its correlations; in particular, we will study
the scaling solutions for the two-point correlation function.
We demonstrate, using the ideas outlined above, how to de-
termine the correlation function self-similar shape and the
scaling exponents that characterize it.

The paper is organized as follows. In Sec. II we present
the exact form of the equation to be solved, define its corre-
lation function and briefly review its known scaling proper-
ties. Following that, in Sec. III we discuss an iterative
method for the determination of the self-similar solution and
its exponents. Section IV presents a matrix-free fixed-point
approach to the same problem, and we conclude with a dis-
cussion in Sec. V.

II. PRELIMINARIES

The equation we will analyze herein is a discretized form
of a modified KPZ equation �in 1+1 dimensions� for the
height h of an interface:

ḣ�x,t� = h��x,t� +
�h��x,t�2

1 + �h��x,t�2 + ��x,t� , �1�

where the noise � is � correlated in space and time:

��� = 0, ���x,t���x�,t��� = S��x − x����t − t�� . �2�

The � term is present as a convenience to ensure that the
equation does not exhibit a finite-time singularity even with
the standard discretization �10�. What is important for us is
just that the equation be in the KPZ universality class. Di-
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mensional analysis shows that � does not change the scaling
behavior of the system, and so this equation meets our re-
quirements.

In discretized form, our equation reads

hi
t+�t = hi

t + �t�hi+1
t − 2hi

t + hi−1
t +

��hi+1
t − hi−1

t �2

4 + ��hi+1
t − hi−1

t �2 + �i
t�
�3�

with ��i
t�=0, ��i

t� j
t��=S�t,t��i,j /�t. We work in a periodic

box of length L. In the following, we take �=1, S=1/12,
�t=0.05. It is customary to start simulations �t=0� from a
flat interface hi

0=0. It is convenient to define the average

height h̄t	�1/L�
i=0
L−1hi

t and the reduced height ĥi
t	hi

t− h̄t.

Since a flat interface is stable, �ĥi�=0, and the basic object of
interest is the two-point correlation function

Gt�d� =
1

L


i=0

L−1

�ĥi
tĥi+d

t � �4�

or, equivalently, its �discrete� Fourier transform

GK
t =

2

L


d=0

L/2

e2�iKd/LGt�d� , �5�

where K=qL / �2��=1, . . . ,L /2 and q is the momentum.
Let us briefly review the basic known scaling properties

of GK
t �9�. For intermediately large wave number K, K*�t�

�K�L /2, GK
t falls like a power law for increasing K, GK

t

�C /K2	+1, where C is independent of t. At small K�K*�t�,
the power-law growth is cut off, and G approaches a finite
limiting value as K→0 with zero derivative. The crossover
length scale 1 /K*�t� grows with time as t1/z, until the satura-
tion time when 1/K*�t��L. This saturation time thus grows
with the system size as Lz. At small K�K*�t�, G saturates at
a value which grows in time as t�2	+1�/z, again until the satu-
ration time. The values of the exponents 	 and z in this
one-dimensional system are known analytically, 	=1/2,
z=3/2. Putting this all together, G has the scaling form

GK
t = t�2	+1�/zf�Kt1/z� , �6�

where the function f�x� approaches a constant for small ar-
guments and decays as 1/x2	+1 for large x.

III. SOLUTION BY DIRECT ITERATION

Our goal is to find a self-consistent GK
t with the correct

scaling properties, i.e., find the function f�¯� in Eq. �6�
above. Roughly speaking, if we knew the exact GK

t , we could
use this knowledge to generate an ensemble of initial h fields
at some time t0, conditioned on this G. We could then evolve
each of these initial h’s forward in time to some tf, and
calculate G at this later time. The new G should then simply
be a rescaled version of the original G. This scaling condi-
tion is what we use to determine G.

There are a number of caveats that need to be expounded
at this point. Some of these are technical in nature, involving
the details of the algorithm used to actually find G. Two,

however, involve matters of principle. The first caveat is that
the full statistical solution is not uniquely determined solely
by the two-point function G. In principle, a complete solu-
tion implies knowledge of all higher-order correlations as
well. However, we posit that the dynamics is such that the
higher-order correlators relax much more quickly than the
two-point function itself. If this is true, there will be a short
transient during which time the system will reconstruct all
the higher-order correlations �will “heal”� while G itself does
not change much. In effect, this is an assumption of separa-
tion of time scales between different order correlators. Thus,
to determine the solution, we compare not G at times t0 and
tf, but at times tI and tf, where tI is an intermediate time
chosen so that the higher-order correlators have had time to
become slaved to G �recover their correct values conditioned
on the given G�.

The second caveat is that G exhibits the desired scaling
properties only asymptotically. At the smallest scales, the
underlying lattice ruins scale invariance. More serious, how-
ever, is the fact that for short times and small scales, the
scaling properties of G are those of the Edwards-Wilkinson,
i.e., the �=0 model �11�. Only for sufficiently large times is
the interface sufficiently rough for the nonlinearity to deter-
mine the scaling. Starting simulations from a flat interface
and evolving for time t0 brings the interface to some scale of
roughness parametrized by t0. Our procedure will converge
on the particular member of the scaling family that has this
characteristic roughness scale; needless to say, all members
of the scaling family �at large enough scales� can be directly
reconstructed. As we will see in more detail below, unless the
initial time t0 �alternatively, the initial roughness scale� is
large enough, our results will be contaminated by the short-
time, small scale Edwards-Wilkinson behavior. Only if our
working scale is large enough for the asymptotically self-
similar behavior to have set in, does our process make sense.
In practice this means that we must test the working rough-
ness scale �alternatively, the working t0� to confirm that both
the self-similar shape and the exponents have converged. As
we increase t0, we will of course have to increase L accord-
ingly, so that we continue to capture the full self-similar
structure of G.

We now move on to the technical details of the calcula-
tion. The primary issue to address is how to solve the fixed-
point equation embodying the scale invariance condition. We
will do this in two different ways. The first is by successive
substitution. Here we just perform repeated cycles of forward
integration, followed by rescaling to the original time
�roughness�. The second is via a fixed point Newton-type
procedure, which we describe in the next section.

Direct iteration proceeds as follows. We start by integrat-
ing the system forward from a flat interface at t=0 to some
t0. We then calculate GK

0 . It is straightforward to generate
configurations hi conditioned on this GK

0 �to “lift” from G to
h�. All we have to do is to remember that GK is the expected
value of �hK�2, the squared magnitude of the fourier transform
of hi. Thus, we generate a Gaussian random number with
zero mean and variance GK

0 , and multiply by a random phase
to obtain a set of hK’s. An inverse Fourier transform gives us
our desired hi. We generate some number, �typically 32 000�
of such initial configurations and integrate each forward in
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time to tf, which we take to be tf =2t0, and measure GK
f . We

also measure GK
I at an intermediate time tI=3t0 /2. From

these measurements we construct the functions of the con-
tinuous variable 0
k
L /2, g0�k�, gI�k�, and gf�k� �see be-
low for details of this interpolation procedure�. This is nec-
essary in order to allow us to rescale the wave number �i.e.,
momentum�. Note that for clarity we distinguish typographi-
cally, using capitals for the discrete set of values GK and
lower case for the interpolating function g�k�.

We now need to rescale gf�k� back to the original rough-
ness scale �or time t0�. We do this is two steps. We first
determine, for each measuring time, a typical small k scale,
k1/2 by the condition g�k1/2�=g�0� /2. We next rescale wave
numbers at times tI and tf by the factors fq

I,f =k1/2
0 /k1/2

I,f , re-
spectively; this “aligns” their rescaled large scale behavior.
We next rescale gI and gf by factors fG

I,f =gI,f�kB / fG
I,f� /g0�kB�

�where kB=L /2 is the geometric mean of the smallest and
largest wave numbers� so that their large wave number be-
havior coincides with that of g0. For the self-similar shape,
the function gf�k / fk

f� / fG
f should reproduce our original func-

tion g0�k�, or more specifically, its values on the integer

wavenumbers, GK
0 In practice, it gives us a new starting point

for another round of iteration; in our problem the self-similar
solution is stable, and this procedure rapidly converges, so
that in fact the differences are only due to fluctuations. If the
problem was truly �as opposed to asymptotically� self-
similar, upon convergence to the self-similar solutions, the
scaling factors fk

I,f and fG
I,f could be used to estimate the

effective scaling exponents 	 and z:

z = ln�tf/tI�/ln�k1/2
I /k1/2

f � = ln�tf/tI�/ln�fk
f /fk

I� ,

	 =
1

2
� ln�fG

f /fG
I �

ln�fk
f /fk

I�
− 1� . �7�

Because the self-similarity is only asymptotic, three succes-
sive times are in fact needed to estimate the exponents. This
procedure constitutes the equation-free implementation of
dynamic renormalization �see, e.g., the classical references
�12–14�, as well as our template-based approach discussed in
Refs. �15,16��.

The last point we need to cover is how we extend our
measured GK’s into a function g�k� on the continuous wave
number variable k. We use a relatively low-dimensional de-
scription of the function g�k�; in particular, we fit a cubic
spline to ln�GK� throughout the whole range, with knots ap-
proximately equally spaced in ln�K�; this provides an ad-
equate description with O�10� degrees of freedom.

An example of the results of this procedure are shown in
Fig. 1, where one cycle of the iteration is shown. We see that
indeed g�k� is recovered to quite good accuracy by our inte-
gration and rescaling, except for the very largest k’s, where
the zero-slope condition imposed by the discreteness of the
lattice is evident in the original G, but not in its rescaled
version.

We present in Fig. 2 a graph of the estimated exponents as
a function of iteration number, for some particular value of t0
and L. We see that the iteration is quite stable, albeit with
sizable statistical fluctuations. In Figs. 3�a� and 3�b�, we
present the cumulative average over iterations of the esti-
mated exponents, as a function of iteration number, for vari-

FIG. 1. �Color online� The iteration cycle for �=5, L=400,
t0=40. �a� G�K , t� for t=40 and t=80, with their respective K1/2’s
noted, together with G�K ,80� after rescaling of K to align its q1/2

with G�K ,40�. �b� G�K ,40� and G�K ,80�, together with G�K ,80�
after rescaling of K and after rescaling of both q and h to collapse it
onto G�K ,40�.

FIG. 2. �Color online� Calculated values of the exponents z, 	
vs iteration for �=5, L=400, t0=40.
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ous sets of t0 and L. What is remarkable is that the calcula-
tion essentially converges immediately, to the precision we
can measure. Our procedure allows us work at an intermedi-
ate scale where we can see simultaneously the rapid satura-
tion of the correlation function at short length scales and the
growth at the coarse scales, tracking the shift of the cross-
over between these two regimes while this evolution is still
relatively fast; approaching the ultimate shape while the in-
terface evolves to coarser scales would take a significantly
longer computational time �the coarser the scale, the longer
the time�. It is this “shape evolution at constant scale” that
underpins the computational savings of the method. We see
that increasing t0 �alternatively, the working roughness scale�
brings the measured value of z down much closer to its
asymptotic value of 3 /2. Since the value of z for the
Edwards-Wilkinson model is 2, we interpret this as indicat-
ing the contamination of our measurement by the crossover
from Edwards-Wilkinson behavior at short scales. In Fig. 4,
we present for comparison the data for the Edwards-
Wilkinson model. Here we immediately obtain values very
close to the expected z=2, 	=1/2, as the only violation to
scaling comes from the very short scale lattice effects.

IV. NEWTON-GMRES FIXED POINT SOLUTION

A direct iteration procedure is, of course, not guaranteed
to converge; the self-similar solution may not be stable for
the system and parameter values of interest. Even if it is
stable, one needs to start in its basin of attraction, and the
rate of approach will asymptotically depend on the local lin-
earization characteristics of our fixed point formulation. It is
therefore desirable to develop approaches that do not rely on
the stability of the fixed point, and the Newton method is the
obvious choice. Lack of an explicit macroscopic equation
means that the Jacobian involved in Newton iterations is not
explicitly available. In principle one could estimate the Jaco-
bian using finite differences; yet, especially for large scale
and noisy problems, such an estimation will be both prone to
error and very costly. Krylov-subspace methods, such as the
Generalized Minimum, have been devised for the iterative
solution of linear equations; they are based on the evaluation
of matrix-vector products of the system Jacobian with a se-
quence of algorithmically determined vectors. When the
Jacobian is not explicitly available, matrix vector products
can be estimated in a matrix-free fashion from nearby func-
tion evaluations—this is the basis for matrix-free Newton-
Krylov-GMRES algorithms �17�. Such algorithms are natu-
rally suited to the fixed point problems arising in our
equation-free renormalization scheme—lifting from nearby
two-point correlation functions, evolving through the KPZ
dynamics, and rescaling the resulting averaged two-point
correlations results in an estimate of the action of the Jaco-
bian of our fixed point problem. This type of iteration is
often particularly well suited for problems with a separation
of time scales �18�.

We used Newton-Krylov GMRES iteration to find the
shape of the fixed point of the KPZ renormalization problem;
the operating parameters were L=400, �=5, and a short
burst of time simulation, �t=5, was used to calculate the
evolved shape. Cubic spline interpolation was again used in
the construction of the function g�k�. All the data were aver-
aged over 96 000 replica initializations consistent with this
g�k�. The initial guess was obtained by starting from a flat

FIG. 3. �Color online� Cumulative average of the estimated ex-
ponents �a� z and �b� 	 as a function of iteration number for �=5
and various pairs of t0, L.

FIG. 4. �Color online� Cumulative average of the estimated
exponent z as a function of iteration number for the Edwards-
Wilkinson model ��=0� and two sets of t0, L.

KESSLER, KEVREKIDIS, AND CHEN PHYSICAL REVIEW E 73, 036703 �2006�

036703-4



interface and evolving for time of t0=5. As shown in Fig. 5,
it took roughly three iterations for the plotted norm of the
residual to decrease by one order of magnititude. The result-
ing fixed point is visually indistinguishable from the one
arrived at by direct substitution, and the same scaling expo-
nents, within the fluctuation bounds, are recovered. The
Newton-based process is not computationally efficient in
problems such as this, where the self-similar solution is
strongly attracting; it would become advantageous, however,
in cases where the self-similar solution is very slowly attract-
ing, or simply unstable, when direct iteration will not con-
verge at all.

V. DISCUSSION AND CONCLUSIONS

We presented a computational approach to finding self-
similar solutions for the statistics of a KPZ-type stochastic
evolution equation. This was accomplished without an ex-
plicit, closed form of an equation governing the dynamics of
these statistics �in particular, the two-point correlation func-
tion�; we estimated this unavailable equation on demand us-
ing short bursts of appropriately initialized direct simula-
tions. The approach was successful in reproducing the
known scaling behavior of the model. One of the important
features of the computation was the detection of the signa-
ture of Edwards-Wilkinson scaling in the data when the
working scales were not chosen large enough �due to
asymptotic self-similarity�. In our current implementation we
used two local conditions �“templates,” Refs. �16,19�� to
implement the two rescalings, those of the stretching of the
wave number �or reshrinking of the length scale� and the
scaling down of GK �equivalently the field variable ampli-

tude hK�. It would be preferable to employ non-local condi-
tions, making the computation more robust to local fluctua-
tions through averaging.

Perhaps the most important assumption of the equation-
free approach is that an equation exists and closes at a cho-
sen level of description; here we assumed that the appropri-
ate level was the two-point correlation function, and that
higher order correlations either do not affect this evolution or
become quickly slaved to it. It is known �20� that in one
spatial dimension the exponents are insensitive to variations
in the third and higher order correlators; this appears not to
be true in higher dimensions. In our computational experi-
ments we found that third order correlations did not become
quickly slaved to two-point correlations �over times compa-
rable to the evolution of the two-point correlation itself�;
since we worked in 1+1 dimension, this is consistent with
the above observation. In higher dimensions, it is not clear
that an equation does indeed close in terms of only the two-
point correlation function; testing this hypothesis would be
an important first task to pursue with our approach. Compu-
tational approaches to initializing “fast” variables consis-
tently with slow ones �alternatively, on a manifold param-
etrized by the slow ones� have long been known in
computational chemistry ��21,22��, and their use in an
equation-free context is discussed, for example, in Ref. �23�.

In this paper we used a KPZ-type SDE as our “inner,” fine
scale solver. The procedure is identical if the SDE solver is
substituted by, for example, a kinetic deposition model; the
computation of coarse self-similar solutions for such models
is underway. For some of these, such as ballistic aggregation,
we do not anticipate any difficulties; for other, more highly
constrained models, e.g., the restricted SOS model �9� the
lifting operation should be nontrivial. In the case of stable
self-similar solutions additional equation-free techniques,
such as coarse projective integration �24,25� can be used to
accelerate the computation of self-similar dynamics. An im-
portant test of the approach will be its ability to compute and
characterize the unstable fixed point that is known to exist in
d�3 dimensions; this is a case where the Newton-GMRES
procedure would be crucial.

Lastly, it would be interesting to perform a detailed com-
parison of this method with an analytic implementation of
this algorithm, supplemented by the dynamical renormaliza-
tion group. Clearly our algorithm is in some sense a purely
numerical realization of the dynamical renormalization
group, whose object of interest is, after all, just the scaling
form of the two-point correlation function which our method
solves for. Making this connection precise should elucidate
the convergence properties of our iteration scheme and the
role of higher-order correlators, among other things.
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FIG. 5. GMRES iterations to find the fixed shape �L=400,
�=5, �=5, N=96 000�. The inset shows the residual R as a func-
tion of iteration number.
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